Selenium Pollution
   HOME

TheInfoList



OR:

Selenium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the symbol Se and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
34. It is a nonmetal (more rarely considered a metalloid) with properties that are intermediate between the elements above and below in the periodic table, sulfur and
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
, and also has similarities to
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, ...
. It seldom occurs in its elemental state or as pure ore compounds in the Earth's crust. Selenium – from
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
( 'Moon') – was discovered in 1817 by , who noted the similarity of the new element to the previously discovered tellurium (named for the Earth). Selenium is found in metal sulfide ores, where it partially replaces the sulfur. Commercially, selenium is produced as a byproduct in the refining of these ores, most often during production. Minerals that are pure
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
or
selenate The selenate ion is . Selenates are analogous to sulfates and have similar chemistry. They are highly soluble in aqueous solutions at ambient temperatures. Unlike sulfate, selenate is a somewhat good oxidizer; it can be reduced to selenite o ...
compounds are known but rare. The chief commercial uses for selenium today are
glassmaking Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass. Glass container ...
and
pigment A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compou ...
s. Selenium is a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
and is used in
photocell Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or b ...
s. Applications in
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, once important, have been mostly replaced with
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
semiconductor devices. Selenium is still used in a few types of DC power
surge protector A 'surge protector'' (or spike suppressor, surge suppressor, surge diverter, surge protection device (SPD) or transient voltage surge suppressor (TVSS) is an appliance or device intended to protect Electronics, electrical devices from voltage s ...
s and one type of
fluorescent Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, ...
quantum dot. Although
trace Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album) Other uses in arts and entertainment * ''Trace'' ...
amounts of selenium are necessary for cellular function in many animals, including humans, both elemental selenium and (especially) selenium
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively c ...
are toxic in even small doses, causing selenosis. Selenium is listed as an ingredient in many multivitamins and other dietary supplements, as well as in
infant formula Infant formula, baby formula, or simply formula (American English); or baby milk, infant milk or first milk (British English), is a manufactured food designed and marketed for feeding to babies and infants under 12 months of age, usually prepar ...
, and is a component of the antioxidant enzymes
glutathione peroxidase Glutathione peroxidase (GPx) () is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid h ...
and
thioredoxin reductase Thioredoxin reductases (TR, TrxR) () are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction ...
(which indirectly reduce certain
oxidized Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
molecules in animals and some plants) as well as in 3
deiodinase Deiodinase (or "Monodeiodinase") is a peroxidase enzyme that is involved in the activation or deactivation of thyroid hormones. Types Types of deiodinases include: Iodothyronine deiodinases catalyze release of iodine directly from the thyro ...
enzymes. Selenium requirements in plants differ by species, with some plants requiring relatively large amounts and others apparently not requiring any.


Characteristics


Physical properties

Selenium forms several allotropes that interconvert with
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
changes, depending somewhat on the rate of temperature change. When prepared in chemical reactions, selenium is usually an amorphous, brick-red powder. When rapidly melted, it forms the black, vitreous form, usually sold commercially as beads. The structure of black selenium is irregular and complex and consists of
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic rings with up to 1000 atoms per ring. Black Se is a brittle, lustrous solid that is slightly soluble in CS2. Upon heating, it softens at 50 Â°C and converts to gray selenium at 180 Â°C; the transformation temperature is reduced by presence of halogens and
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen Hydrogen is the chemical element wi ...
s. The red α, β, and γ forms are produced from solutions of black selenium by varying the evaporation rate of the solvent (usually CS2). They all have a relatively low,
monoclinic In crystallography, the monoclinic crystal system is one of the seven crystal systems. A crystal system is described by three vectors. In the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic s ...
crystal symmetry (
space group In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it uncha ...
14) and contain nearly identical puckered Se8 rings with different arrangements, as in sulfur. The eight atoms of a ring are not equivalent (i.e. they are not mapped one onto another by any symmetry operation), and in fact in the γ-monoclinic form, half the rings are in one configuration (and its mirror image) and half in another. The packing is most dense in the α form. In the Se8 rings, the Se-Se distance varies depending on where the pair of atoms is in the ring, but the average is 233.5 pm, and the Se-Se-Se angle is on average 105.7° . Other selenium allotropes may contain Se6 or Se7 rings. The most stable and dense form of selenium is gray and has a
chiral Chirality is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from i ...
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
al crystal lattice (space group 152 or 154 depending on the chirality) consisting of helical polymeric chains, where the Se-Se distance is 237.3 pm and Se-Se-Se angle is 103.1° . The minimum distance between chains is 343.6 pm. Gray Se is formed by mild heating of other allotropes, by slow cooling of molten Se, or by condensing Se vapor just below the melting point. Whereas other Se forms are
insulators Insulator may refer to: * Insulator (electricity), a substance that resists electricity ** Pin insulator, a device that isolates a wire from a physical support such as a pin on a utility pole ** Strain insulator, a device that is designed to work ...
, gray Se is a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
showing appreciable
photoconductivity Photoconductivity is an optical and electrical phenomenon in which a material becomes more electrically conductive due to the absorption of electromagnetic radiation such as visible light, ultraviolet light, infrared light, or gamma radiation ...
. Unlike the other allotropes, it is insoluble in CS2. It resists oxidation by air and is not attacked by nonoxidizing acids. With strong reducing agents, it forms polyselenides. Selenium does not exhibit the changes in viscosity that sulfur undergoes when gradually heated.


Optical properties

Owing to its use as a photoconductor in flat-panel x-ray detectors (see below), the optical properties of amorphous selenium (α-Se) thin films have been the subject of intense research.


Isotopes

Selenium has seven naturally occurring
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s. Five of these, 74Se, 76Se, 77Se, 78Se, 80Se, are stable, with 80Se being the most abundant (49.6% natural abundance). Also naturally occurring is the long-lived
primordial radionuclide In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the ...
82Se, with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 9.2×1019 years. The non-primordial radioisotope 79Se also occurs in minute quantities in
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
ores as a product of nuclear fission. Selenium also has numerous unstable synthetic isotopes ranging from 64Se to 95Se; the most stable are 75Se with a half-life of 119.78 days and 72Se with a half-life of 8.4 days. Isotopes lighter than the stable isotopes primarily undergo
beta plus decay Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron ...
to isotopes of arsenic, and isotopes heavier than the stable isotopes undergo
beta minus decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For exam ...
to
isotopes of bromine Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 32 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours. List of isotopes , - , 68Br , style="text-align:right" , 35 , style="text-align:right" , ...
, with some minor
neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
branches in the heaviest known isotopes.


Chemical compounds

Selenium compounds commonly exist in the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
s −2, +2, +4, and +6.


Chalcogen compounds

Selenium forms two oxides:
selenium dioxide Selenium dioxide is the chemical compound with the formula SeO2. This colorless solid is one of the most frequently encountered compounds of selenium. Properties Solid SeO2 is a one-dimensional polymer, the chain consisting of alternating seleniu ...
(SeO2) and selenium trioxide (SeO3). Selenium dioxide is formed by the reaction of elemental selenium with oxygen: :Se8 + 8 O2 -> 8 SeO2 It is a
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic solid that forms monomeric SeO2 molecules in the gas phase. It dissolves in water to form
selenous acid Selenous acid (or selenious acid) is the chemical compound with the formula . Structurally, it is more accurately described by . It is the principal oxoacid of selenium; the other being selenic acid. Formation and properties Selenous acid is a ...
, H2SeO3. Selenous acid can also be made directly by oxidizing elemental selenium with
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
: :3 Se + 4 HNO3 + H2O -> 3 H2SeO3 + 4 NO Unlike sulfur, which forms a stable trioxide, selenium trioxide is thermodynamically unstable and decomposes to the dioxide above 185 Â°C: :2 SeO3 -> 2 SeO2 + O2 (ΔH = −54 kJ/mol) Selenium trioxide is produced in the laboratory by the reaction of anhydrous potassium selenate (K2SeO4) and sulfur trioxide (SO3).
Salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively c ...
of selenous acid are called selenites. These include silver selenite (Ag2SeO3) and
sodium selenite Sodium selenite is the inorganic compound with the formula Na2SeO3. This salt is a colourless solid. The pentahydrate Na2SeO3(H2O)5 is the most common water-soluble selenium compound. Synthesis and fundamental reactions Sodium selenite usually i ...
(Na2SeO3). Hydrogen sulfide reacts with aqueous selenous acid to produce
selenium disulfide Selenium disulfide, also known as selenium sulfide, is a chemical compound and medication used to treat seborrheic dermatitis, dandruff, and pityriasis versicolor. It is applied to the affected area as a lotion or shampoo. Symptoms frequently re ...
: :H2SeO3 + 2 H2S -> SeS2 + 3 H2O Selenium disulfide consists of 8-membered rings. It has an approximate composition of SeS2, with individual rings varying in composition, such as Se4S4 and Se2S6. Selenium disulfide has been used in shampoo as an anti
dandruff Dandruff is a skin condition that mainly affects the scalp. Symptoms include flaking and sometimes mild itchiness. It can result in social or self-esteem problems. A more severe form of the condition, which includes inflammation of the skin, ...
agent, an inhibitor in polymer chemistry, a glass dye, and a reducing agent in
fireworks Fireworks are a class of low explosive pyrotechnic devices used for aesthetic and entertainment purposes. They are most commonly used in fireworks displays (also called a fireworks show or pyrotechnics), combining a large number of devices ...
. Selenium trioxide may be synthesized by dehydrating
selenic acid Selenic acid is the inorganic compound with the formula . It is an oxoacid of selenium, and its structure is more accurately described as . It is a colorless compound. Although it has few uses, its derivative sodium selenate is used in the prod ...
, H2SeO4, which is itself produced by the oxidation of selenium dioxide with
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%â ...
: :SeO2 + H2O2 -> H2SeO4 Hot, concentrated selenic acid can react with gold to form gold(III) selenate.


Halogen compounds

Iodide An iodide ion is the ion I−. Compounds with iodine in formal oxidation state −1 are called iodides. In everyday life, iodide is most commonly encountered as a component of iodized salt, which many governments mandate. Worldwide, iodine de ...
s of selenium are not well known. The only stable
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
is selenium monochloride (Se2Cl2), which might be better known as selenium(I) chloride; the corresponding
bromide A bromide ion is the negatively charged form (Br−) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant ...
is also known. These species are structurally analogous to the corresponding disulfur dichloride. Selenium dichloride is an important reagent in the preparation of selenium compounds (e.g. the preparation of Se7). It is prepared by treating selenium with
sulfuryl chloride Sulfuryl chloride is an inorganic compound with the formula SO2Cl2. At room temperature, it is a colorless liquid with a pungent odor. Sulfuryl chloride is not found in nature, as can be inferred from its rapid hydrolysis. Sulfuryl chloride is ...
(SO2Cl2). Selenium reacts with fluorine to form
selenium hexafluoride Selenium hexafluoride is the inorganic compound with the formula SeF6. It is a very toxic colourless gas described as having a "repulsive" odor. It is not widely encountered and has no commercial applications. Structure, preparation, and reacti ...
: :Se8 + 24 F2 -> 8 SeF6 In comparison with its sulfur counterpart ( sulfur hexafluoride),
selenium hexafluoride Selenium hexafluoride is the inorganic compound with the formula SeF6. It is a very toxic colourless gas described as having a "repulsive" odor. It is not widely encountered and has no commercial applications. Structure, preparation, and reacti ...
(SeF6) is more reactive and is a toxic
pulmonary The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of ...
irritant. Some of the selenium oxyhalides, such as seleninyl fluoride (SeOF2) and selenium oxychloride (SeOCl2) have been used as specialty solvents.


Selenides

Analogous to the behavior of other chalcogens, selenium forms
hydrogen selenide Hydrogen selenide is an inorganic compound with the formula H2Se. This hydrogen chalcogenide is the simplest and most commonly encountered hydride of selenium. H2Se is a colorless, flammable gas under standard conditions. It is the most toxic sel ...
, H2Se. It is a strongly odiferous, toxic, and colorless gas. It is more acidic than H2S. In solution it ionizes to HSe−. The selenide dianion Se2− forms a variety of compounds, including the minerals from which selenium is obtained commercially. Illustrative selenides include
mercury selenide Mercury selenide (HgSe; sometimes mercury(II) selenide) is a chemical compound of mercury and selenium. It is a grey-black crystalline solid semi-metal with a sphalerite structure. The lattice constant is 0.608 nm. HgSe occurs naturally as ...
(HgSe),
lead selenide Lead selenide (PbSe), or lead(II) selenide, a selenide of lead, is a semiconductor material. It forms cubic crystals of the NaCl structure; it has a direct bandgap of 0.27 eV at room temperature. (Note that incorrectly identifies PbSe and ...
(PbSe),
zinc selenide Zinc selenide (ZnSe) is a light-yellow, solid compound comprising zinc (Zn) and selenium (Se). It is an intrinsic semiconductor with a band gap of about 2.70  eV at . ZnSe rarely occurs in nature, and is found in the mineral that was named af ...
(ZnSe), and
copper indium gallium diselenide Copper indium gallium (di)selenide (CIGS) is a I- III- VI2 semiconductor material composed of copper, indium, gallium, and selenium. The material is a solid solution of copper indium selenide (often abbreviated "CIS") and copper gallium selenide ...
(Cu(Ga,In)Se2). These materials are
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
s. With highly electropositive metals, such as
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, these selenides are prone to hydrolysis: :Al2Se3 + 3 H2O -> Al2O3 + 3 H2Se Alkali metal selenides react with selenium to form polyselenides, , which exist as chains.


Other compounds

Tetraselenium tetranitride, Se4N4, is an explosive orange compound analogous to
tetrasulfur tetranitride Tetrasulfur tetranitride is an inorganic compound with the formula . This gold-poppy coloured solid is the most important binary sulfur nitride, which are compounds that contain only the elements sulfur and nitrogen. It is a precursor to many S-N ...
(S4N4). It can be synthesized by the reaction of
selenium tetrachloride Selenium tetrachloride is the inorganic compound composed with the formula SeCl4. This compound exists as yellow to white volatile solid. It is one of two commonly available selenium chlorides, the other example being selenium monochloride, S ...
(SeCl4) with . Selenium reacts with
cyanide Cyanide is a naturally occurring, rapidly acting, toxic chemical that can exist in many different forms. In chemistry, a cyanide () is a chemical compound that contains a functional group. This group, known as the cyano group, consists of ...
s to yield selenocyanates: :8 KCN + Se8 -> 8 KSeCN


Organoselenium compounds

Selenium, especially in the II oxidation state, forms stable bonds to
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
, which are structurally analogous to the corresponding
organosulfur compounds Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfu ...
. Especially common are selenides (R2Se, analogues of
thioether In organic chemistry, an organic sulfide (British English sulphide) or thioether is an organosulfur functional group with the connectivity as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A su ...
s), diselenides (R2Se2, analogues of disulfides), and selenols (RSeH, analogues of thiols). Representatives of selenides, diselenides, and selenols include respectively selenomethionine, diphenyldiselenide, and benzeneselenol. The sulfoxide in sulfur chemistry is represented in selenium chemistry by the selenoxides (formula RSe(O)R), which are intermediates in organic synthesis, as illustrated by the selenoxide elimination reaction. Consistent with trends indicated by the double bond rule, selenoketones, R(C=Se)R, and selenaldehydes, R(C=Se)H, are rarely observed.


History

Selenium (Greek language, Greek σελήνη ''selene'' meaning "Moon") was discovered in 1817 by Jöns Jacob Berzelius and Johan Gottlieb Gahn. Both chemists owned a chemistry plant near Gripsholm, Sweden, producing sulfuric acid by the lead chamber process. The pyrite from the Falun Mine created a red precipitate in the lead chambers which was presumed to be an arsenic compound, so the pyrite's use to make acid was discontinued. Berzelius and Gahn wanted to use the pyrite and they also observed that the red precipitate gave off a smell like horseradish when burned. This smell was not typical of arsenic, but a similar odor was known from
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
compounds. Hence, Berzelius's first letter to Alexander Marcet stated that this was a tellurium compound. However, the lack of tellurium compounds in the Falun Mine minerals eventually led Berzelius to reanalyze the red precipitate, and in 1818 he wrote a second letter to Marcet describing a newly found element similar to sulfur and tellurium. Because of its similarity to tellurium, named for the Earth, Berzelius named the new element after the Moon. In 1873, Willoughby Smith found that the electrical resistance of grey selenium was dependent on the ambient light. This led to its use as a cell for sensing light. The first commercial products using selenium were developed by Werner Siemens in the mid-1870s. The selenium cell was used in the photophone developed by Alexander Graham Bell in 1879. Selenium transmits an electric current proportional to the amount of light falling on its surface. This phenomenon was used in the design of light meters and similar devices. Selenium's semiconductor properties found numerous other applications in electronics. The development of selenium rectifiers began during the early 1930s, and these replaced copper oxide rectifiers because they were more efficient. These lasted in commercial applications until the 1970s, following which they were replaced with less expensive and even more efficient silicon rectifiers. Selenium came to medical notice later because of its toxicity to industrial workers. Selenium was also recognized as an important veterinary toxin, which is seen in animals that have eaten high-selenium plants. In 1954, the first hints of specific biological functions of selenium were discovered in microorganisms by biochemist, Jane Gibson, Jane Pinsent. It was discovered to be essential for mammalian life in 1957. In the 1970s, it was shown to be present in two independent sets of enzymes. This was followed by the discovery of selenocysteine in proteins. During the 1980s, selenocysteine was shown to be encoded by the Genetic code, codon UGA. The recoding mechanism was worked out first in bacteria and then in mammals (see SECIS element).


Occurrence

Native (i.e., elemental) selenium is a rare mineral, which does not usually form good crystals, but, when it does, they are steep rhombohedra or tiny acicular (hair-like) crystals. Isolation of selenium is often complicated by the presence of other compounds and elements. Selenium occurs naturally in a number of inorganic forms, including
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
,
selenate The selenate ion is . Selenates are analogous to sulfates and have similar chemistry. They are highly soluble in aqueous solutions at ambient temperatures. Unlike sulfate, selenate is a somewhat good oxidizer; it can be reduced to selenite o ...
, and Selenite (ion), selenite, but these minerals are rare. The common mineral selenite (mineral), selenite is not a selenium mineral, and contains no Selenite (ion), selenite ion, but is rather a type of gypsum (calcium sulfate hydrate) named like selenium for the moon well before the discovery of selenium. Selenium is most commonly found as an impurity, replacing a small part of the sulfur in sulfide ores of many metals. In living systems, selenium is found in the amino acids selenomethionine, selenocysteine, and methylselenocysteine. In these compounds, selenium plays a role analogous to that of sulfur. Another naturally occurring organoselenium compound is dimethyl selenide. Certain soils are selenium-rich, and selenium can be bioaccumulation, bioconcentrated by some plants. In soils, selenium most often occurs in soluble forms such as selenate (analogous to sulfate), which are leached into rivers very easily by runoff. Ocean water contains significant amounts of selenium. Typical background concentrations of selenium do not exceed 1 ng/m3 in the atmosphere; 1 mg/kg in soil and vegetation and 0.5 μg/L in freshwater and seawater. Anthropogenic sources of selenium include coal burning, and the mining and smelting of sulfide ores.


Production

Selenium is most commonly produced from
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
in many sulfide ores, such as those of copper, nickel, or lead. Electrolytic metal refining is particularly productive of selenium as a byproduct, obtained from the anode mud of copper refineries. Another source was the mud from the Lead chamber process, lead chambers of sulfuric acid plants, a process that is no longer used. Selenium can be refined from these muds by a number of methods. However, most elemental selenium comes as a byproduct of Refining (metallurgy), refining copper or producing sulfuric acid. Since its invention, solvent extraction and electrowinning (SX/EW) production of copper produces an increasing share of the worldwide copper supply. This changes the availability of selenium because only a comparably small part of the selenium in the ore is leached with the copper. Industrial production of selenium usually involves the extraction of
selenium dioxide Selenium dioxide is the chemical compound with the formula SeO2. This colorless solid is one of the most frequently encountered compounds of selenium. Properties Solid SeO2 is a one-dimensional polymer, the chain consisting of alternating seleniu ...
from residues obtained during the purification of copper. Common production from the residue then begins by oxidation with sodium carbonate to produce selenium dioxide, which is mixed with water and acidified to form
selenous acid Selenous acid (or selenious acid) is the chemical compound with the formula . Structurally, it is more accurately described by . It is the principal oxoacid of selenium; the other being selenic acid. Formation and properties Selenous acid is a ...
(oxidation step). Selenous acid is bubbled with sulfur dioxide (Redox, reduction step) to give elemental selenium. About 2,000 tonnes of selenium were produced in 2011 worldwide, mostly in Germany (650 t), Japan (630 t), Belgium (200 t), and Russia (140 t), and the total reserves were estimated at 93,000 tonnes. These data exclude two major producers: the United States and China. A previous sharp increase was observed in 2004 from $4–$5 to $27/lb. The price was relatively stable during 2004–2010 at about US$30 per pound (in 100 pound lots) but increased to $65/lb in 2011. The consumption in 2010 was divided as follows: metallurgy – 30%, glass manufacturing – 30%, agriculture – 10%, chemicals and pigments – 10%, and electronics – 10%. China is the dominant consumer of selenium at 1,500–2,000 tonnes/year.


Applications


Fertilizers

Researchers found that application of selenium fertilizer to lettuce crops decreased the accumulation of lead and cadmium. Peaches and pears given a foliar selenium spray contained higher levels of selenium and also stayed firm and ripe longer when in storage. In low doses, selenium has shown a beneficial effect on plant resistance to various environmental stress factors including drought, UV-B, soil salinity, and cold or hot temperatures. However, it can damage plants at higher doses.


Manganese electrolysis

During the electrowinning of manganese, the addition of
selenium dioxide Selenium dioxide is the chemical compound with the formula SeO2. This colorless solid is one of the most frequently encountered compounds of selenium. Properties Solid SeO2 is a one-dimensional polymer, the chain consisting of alternating seleniu ...
decreases the power necessary to operate the Electrolytic cell, electrolysis cells. China is the largest consumer of selenium dioxide for this purpose. For every tonne of manganese, an average 2 kg selenium oxide is used.


Glass production

The largest commercial use of Se, accounting for about 50% of consumption, is for the production of glass. Se compounds confer a red color to glass. This color cancels out the green or yellow tints that arise from iron impurities typical for most glass. For this purpose, various selenite and selenate salts are added. For other applications, a red color may be desired, produced by mixtures of CdSe and CdS.Bernd E. Langner "Selenium and Selenium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. .


Alloys

Selenium is used with bismuth in brasses to replace more toxic lead. The regulation of lead in drinking water applications such as in the US with the Safe Drinking Water Act of 1974, made a reduction of lead in brass necessary. The new brass is marketed under the name EnviroBrass. Like lead and sulfur, selenium improves the machinability of steel at concentrations around 0.15%. Selenium produces the same machinability improvement in copper alloys.


Lithium–selenium batteries

The lithium–selenium (Li–Se) battery is one of the most promising systems for energy storage in the family of lithium batteries. The Li–Se battery is an alternative to the lithium–sulfur battery, with an advantage of high electrical conductivity.


Solar cells

Selenium was the basis of the very first solar cells, with the first example of rooftop solar being a Charles Fritts, selenium cell from 1884. Such cells were later used in battery-free light meters for photography. Copper indium gallium selenide solar cell, Copper indium gallium selenide is a material used in solar cells.


Photoconductors

Amorphous selenium (α-Se) thin films have found application as photoconductors in Flat panel detector, flat panel x-ray detectors. These detectors use amorphous selenium to capture and convert incident x-ray photons directly into electric charge.
Direct vs. Indirect Conversion
''


Rectifiers

Selenium rectifiers were first used in 1933. Their use continued into the 1990s.


Other uses

Small amounts of organoselenium compounds have been used to modify the catalysts used for the sulfur vulcanization, vulcanization for the production of rubber. The demand for selenium by the electronics industry is declining. Its photovoltaics, photovoltaic and photoconductivity, photoconductive properties are still useful in photocopying,
photocell Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or b ...
s, light meters and solar cells. Its use as a photoconductor in plain-paper copiers once was a leading application, but in the 1980s, the photoconductor application declined (although it was still a large end-use) as more and more copiers switched to organic photoconductors. Though once widely used, selenium rectifiers have mostly been replaced (or are being replaced) by silicon-based devices. The most notable exception is in power DC surge protection, where the superior energy capabilities of selenium suppressors make them more desirable than metal-oxide varistors. Zinc selenide was the first material for blue LEDs, but gallium nitride dominates that market. Cadmium selenide was an important component in quantum dots. Sheets of amorphous selenium convert X-ray images to patterns of charge in xeroradiography and in solid-state, flat-panel X-ray cameras. Ionized selenium (Se+24) is one of the active mediums used in X-ray lasers. Selenium is a catalyst in some chemical reactions, but it is not widely used because of issues with toxicity. In X-ray crystallography, incorporation of one or more selenium atoms in place of sulfur helps with multiple-wavelength anomalous dispersion and single wavelength anomalous dispersion phasing. Selenium is used in the photographic print toning, toning of photographic prints, and it is sold as a toner by numerous photographic manufacturers. Selenium intensifies and extends the tonal range of black-and-white photographic images and improves the permanence of prints. 75Se is used as a gamma source in industrial radiography.


Pollution

In high concentrations, selenium acts as an environmental contaminant. Sources of pollution include waste materials from certain mining, agricultural, petrochemical, and industrial manufacturing operations. In Belews Lake North Carolina, 19 species of fish were eliminated from the lake due to 150–200 Î¼g Se/L wastewater discharged from 1974 to 1986 from a Duke Energy coal-fired power plant. At the Kesterson National Wildlife Refuge in California, thousands of fish and waterbirds were poisoned by selenium in agricultural irrigation drainage. Substantial physiological changes may occur in fish with high tissue concentrations of selenium. Fish affected by selenium may experience swelling of the gill lamellae, which impedes oxygen diffusion across the gills and blood flow within the gills. Respiratory capacity is further reduced due to selenium binding to hemoglobin. Other problems include degeneration of liver tissue, swelling around the heart, damaged egg follicles in ovaries, cataracts, and accumulation of fluid in the body cavity and head. Selenium often causes a malformed fish fetus which may have problems feeding or respiring; distortion of the fins or spine is also common. Adult fish may appear healthy despite their inability to produce viable offspring. Selenium is Bioaccumulation, bioaccumulated in aquatic habitats, which results in higher concentrations in organisms than the surrounding water. Organoselenium compounds can be concentrated over 200,000 times by zooplankton when water concentrations are in the 0.5 to 0.8 Î¼g Se/L range. Inorganic selenium bioaccumulates more readily in phytoplankton than zooplankton. Phytoplankton can concentrate inorganic selenium by a factor of 3000. Further concentration through bioaccumulation occurs along the food chain, as predators consume selenium rich prey. It is recommended that a water concentration of 2 Î¼g Se/L be considered highly hazardous to sensitive fish and aquatic birds. Selenium poisoning can be passed from parents to offspring through the egg, and selenium poisoning may persist for many generations. Reproduction of mallard ducks is impaired at dietary concentrations of 7 Î¼g Se/L. Many benthic invertebrates can tolerate selenium concentrations up to 300 Î¼g/L of Se in their diet. Selenium pollution might impact some aquatic systems and may be caused by anthropogenic factors such as farming runoff and industrial processes. Fish are a major source of protein for humans, people who eat more fish are generally healthier than those who eat less, indicating selenium pollution does not appear to be a problem, although it might be useful to be aware that selenium has a potential effect on humans. Bioaccumulation of selenium in aquatic environments causes fish kills depending on the species in the affected area. There are, however, a few species that have been seen to survive these events and tolerate the increased selenium. It has also been suggested that season could have an impact on the harmful effects of selenium on fish. Selenium poisoning of water systems may result whenever new agricultural run-off courses through dry lands. This process leaches natural soluble selenium compounds (such as selenates) into the water, which may then be concentrated in wetlands as the water evaporates. Selenium pollution of waterways also occurs when selenium is leached from coal flue ash, mining and metal smelting, crude oil processing, and landfill. High selenium levels in waterways were found to cause congenital disorders in oviparous species, including wetland birds and fish. Elevated dietary methylmercury levels can amplify the harm of selenium toxicity in oviparous species.


Biological role

Although it is toxic in large doses, selenium is an essential micronutrient for animals. In plants, it occurs as a bystander mineral, sometimes in toxic proportions in forage (some plants may accumulate selenium as a defense against being eaten by animals, but other plants, such as locoweed, require selenium, and their growth indicates the presence of selenium in soil). Selenium is a component of the unusual amino acids selenocysteine and selenomethionine. In humans, selenium is a dietary mineral, trace element nutrient that functions as Cofactor (biochemistry), cofactor for redox, reduction of antioxidant enzymes, such as
glutathione peroxidase Glutathione peroxidase (GPx) () is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid h ...
s and certain forms of
thioredoxin reductase Thioredoxin reductases (TR, TrxR) () are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction ...
found in animals and some plants (this enzyme occurs in all living organisms, but not all forms of it in plants require selenium). The
glutathione peroxidase Glutathione peroxidase (GPx) () is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid h ...
family of enzymes (GSH-Px) catalyze certain reactions that remove reactive oxygen species such as
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3%â ...
and organic hydroperoxides: :2 GSH + H2O2----GSH-Px → GSSG + 2 H2O The thyroid gland and every cell that uses thyroid hormone use selenium, which is a cofactor for the three of the four known types of thyroid hormone
deiodinase Deiodinase (or "Monodeiodinase") is a peroxidase enzyme that is involved in the activation or deactivation of thyroid hormones. Types Types of deiodinases include: Iodothyronine deiodinases catalyze release of iodine directly from the thyro ...
s, which activate and then deactivate various thyroid hormones and their metabolites; the iodothyronine deiodinases are the subfamily of deiodinase enzymes that use selenium as the otherwise rare amino acid selenocysteine. (Only the deiodinase iodotyrosine deiodinase, which works on the last breakdown products of thyroid hormone, does not use selenium.) Selenium may inhibit Hashimoto's thyroiditis, Hashimoto's disease, in which the body's own thyroid cells are attacked as foreign. A reduction of 21% on TPO antibodies is reported with the dietary intake of 0.2 mg of selenium. Increased dietary selenium reduces the effects of mercury toxicity, although it is effective only at low to modest doses of mercury. Evidence suggests that the molecular mechanisms of mercury toxicity includes the irreversible inhibition of selenoenzymes that are required to prevent and reverse oxidative damage in brain and endocrine tissues. An antioxidant, selenoneine, which is derived from selenium and has been found to be present in the blood of bluefin tuna, is the subject of scientific research regarding its possible roles in inflammatory and chronic diseases, methylmercury detoxification, and oxidative damages. It seems as though when mercury levels in a marine fish rise, so do the selenium levels. To the knowledge of researchers, there are no reports of mercury levels exceeding that of selenium levels in ocean fish.


Evolution in biology

From about three billion years ago, prokaryotic selenoprotein families drive the evolution of selenocysteine, an amino acid. Selenium is incorporated into several prokaryotic selenoprotein families in bacteria, archaea, and eukaryotes as selenocysteine, where selenoprotein peroxiredoxins protect bacterial and eukaryotic cells against oxidative damage. Selenoprotein families of GSH-Px and the deiodinases of eukaryotic cells seem to have a bacterial Phylogenetics, phylogenetic origin. The selenocysteine-containing form occurs in species as diverse as green algae, diatoms, sea urchins, fish, and chickens. Selenium enzymes are involved in the small reducing molecules glutathione and thioredoxin. One family of selenium-bearing molecules (the
glutathione peroxidase Glutathione peroxidase (GPx) () is the general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid h ...
s) destroys peroxide and repairs damaged peroxidized cell membranes, using glutathione. Another selenium-bearing enzyme in some plants and in animals (
thioredoxin reductase Thioredoxin reductases (TR, TrxR) () are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction ...
) generates reduced thioredoxin, a dithiol that serves as an electron source for peroxidases and also the important reducing enzyme ribonucleotide reductase that makes DNA precursors from RNA precursors. Trace elements involved in GSH-Px and superoxide dismutase enzymes activities, i.e. selenium, vanadium, magnesium, copper, and zinc, may have been lacking in some terrestrial mineral-deficient areas. Marine organisms retained and sometimes expanded their selenoproteomes, whereas the selenoproteomes of some terrestrial organisms were reduced or completely lost. These findings suggest that, with the exception of vertebrates, aquatic life supports selenium use, whereas terrestrial habitats lead to reduced use of this trace element. Marine fishes and vertebrate thyroid glands have the highest concentration of selenium and iodine. From about 500 million years ago, freshwater and terrestrial plants slowly optimized the production of "new" endogenous antioxidants such as ascorbic acid (vitamin C), polyphenols (including flavonoids), tocopherols, etc. A few of these appeared more recently, in the last 50–200 million years, in fruits and flowers of angiosperm plants. In fact, the angiosperms (the dominant type of plant today) and most of their antioxidant pigments evolved during the late Jurassic period. The deiodinase Isozyme, isoenzymes constitute another family of eukaryotic selenoproteins with identified enzyme function. Deiodinases are able to extract electrons from iodides, and iodides from iodothyronines. They are, thus, involved in thyroid-hormone regulation, participating in the protection of Thyroid epithelial cell, thyrocytes from damage by H2O2 produced for thyroid-hormone biosynthesis. About 200 million years ago, new selenoproteins were developed as mammalian GSH-Px enzymes.


Nutritional sources of selenium

Dietary selenium comes from meat, nuts, cereals and mushrooms. Brazil nuts are the richest dietary source (though this is soil-dependent, since the Brazil nut does not require high levels of the element for its own needs). The US Recommended Dietary Allowance (RDA) of selenium for teenagers and adults is 55 Microgram, µg/day. Selenium as a dietary supplement is available in many forms, including multi-vitamins/mineral supplements, which typically contain 55 or 70 Âµg/serving. Selenium-specific supplements typically contain either 100 or 200 Âµg/serving. In June 2015, the US Food and Drug Administration (FDA) published its final rule establishing the requirement of minimum and maximum levels of selenium in
infant formula Infant formula, baby formula, or simply formula (American English); or baby milk, infant milk or first milk (British English), is a manufactured food designed and marketed for feeding to babies and infants under 12 months of age, usually prepar ...
. The selenium content in the human body is believed to be in the 13–20 mg range.


Indicator plant species

Certain species of plants are considered indicators of high selenium content of the soil because they require high levels of selenium to thrive. The main selenium indicator plants are ''Astragalus'' species (including some locoweeds), prince's plume (''Stanleya (plant), Stanleya'' sp.), woody asters (''Xylorhiza (plant), Xylorhiza'' sp.), and false goldenweed (''Oonopsis'' sp.)


Detection in biological fluids

Selenium may be measured in blood, plasma, serum, or urine to monitor excessive environmental or occupational exposure, to confirm a diagnosis of poisoning in hospitalized victims, or investigate a suspected case of fatal overdose. Some analytical techniques are capable of distinguishing organic from inorganic forms of the element. Both organic and inorganic forms of selenium are largely converted to monosaccharide conjugates (selenosugars) in the body prior to elimination in the urine. Cancer patients receiving daily oral doses of selenothionine may achieve very high plasma and urine selenium concentrations.


Toxicity

Although selenium is an essential dietary mineral, trace element, it is toxic if taken in excess. Exceeding the Dietary Reference Intake, Tolerable Upper Intake Level of 400 micrograms per day can lead to selenosis. This 400 Âµg Tolerable Upper Intake Level is based primarily on a 1986 study of five Chinese patients who exhibited overt signs of selenosis and a follow up study on the same five people in 1992. The 1992 study actually found the maximum safe dietary Se intake to be approximately 800 micrograms per day (15 micrograms per kilogram body weight), but suggested 400 micrograms per day to avoid creating an imbalance of nutrients in the diet and to accord with data from other countries. In China, people who ingested corn grown in extremely selenium-rich stony coal (carbonaceous shale) have suffered from selenium toxicity. This coal was shown to have selenium content as high as 9.1%, the highest concentration in coal ever recorded. Signs and symptoms of selenosis include a garlic odor on the breath, gastrointestinal disorders, hair loss, sloughing of nails, fatigue, irritability, and neurological damage. Extreme cases of selenosis can exhibit cirrhosis of the liver, pulmonary edema, or death. Elemental selenium and most metallic
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
s have relatively low toxicities because of low bioavailability. By contrast,
selenate The selenate ion is . Selenates are analogous to sulfates and have similar chemistry. They are highly soluble in aqueous solutions at ambient temperatures. Unlike sulfate, selenate is a somewhat good oxidizer; it can be reduced to selenite o ...
s and Selenite (ion), selenites have an oxidant mode of action similar to that of arsenic trioxide and are very toxic. The chronic toxic dose of selenite for humans is about 2400 to 3000 micrograms of selenium per day. Hydrogen selenide is an extremely toxic, corrosive gas. Selenium also occurs in organic compounds, such as dimethyl selenide, selenomethionine, selenocysteine and methylselenocysteine, all of which have high bioavailability and are toxic in large doses. On 19 April 2009, 21 polo ponies died shortly before a match in the United States Polo Open. Three days later, a pharmacy released a statement explaining that the horses had received an incorrect dose of one of the ingredients used in a vitamin/mineral supplement compound that had been incorrectly prepared by a compounding pharmacy. Analysis of blood levels of inorganic compounds in the supplement indicated the selenium concentrations were 10 to 15 times higher than normal in the blood samples, and 15 to 20 times higher than normal in the liver samples. Selenium was later confirmed to be the toxic factor. In fish and other wildlife, selenium is necessary for life, but toxic in high doses. For salmon, the optimal concentration of selenium is about 1 microgram selenium per gram of whole body weight. Much below that level, young salmon die from deficiency; much above, they die from toxic excess. The Occupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for selenium in the workplace at 0.2 mg/m3 over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a Recommended exposure limit (REL) of 0.2 mg/m3 over an 8-hour workday. At levels of 1 mg/m3, selenium is IDLH, immediately dangerous to life and health.


Deficiency

Selenium deficiency can occur in patients with severely compromised intestine, intestinal function, those undergoing total parenteral nutrition, and in those of advanced age (over 90). Also, people dependent on food grown from selenium-deficient soil are at risk. Although New Zealand soil has low levels of selenium, adverse health effects have not been detected in the residents. Selenium deficiency, defined by low (<60% of normal) selenoenzyme activity levels in brain and endocrine tissues, occurs only when a low selenium level is linked with an additional stress, such as high exposures to Mercury (element), mercury or increased oxidant stress from vitamin E deficiency. Selenium interacts with other nutrients, such as iodine and vitamin E. The effect of selenium deficiency on health remains uncertain, particularly in relation to Kashin-Beck disease. Also, selenium interacts with other minerals, such as zinc and copper. High doses of Se supplements in pregnant animals might disturb the Zn:Cu ratio and lead to Zn reduction; in such treatment cases, Zn levels should be monitored. Further studies are needed to confirm these interactions. In the regions (e.g. various regions within North America) where low selenium soil levels lead to low concentrations in the plants, some animal species may be deficient unless selenium is supplemented with diet or injection. Ruminants are particularly susceptible. In general, absorption of dietary selenium is lower in ruminants than other animals, and is lower from forages than from grain.National Research Council, Committee on Nutrient Requirements of Small Ruminants (2007). ''Nutrient requirements of small ruminants''. National Academies Press, Washington, . Ruminants grazing certain forages, e.g., some white clover varieties containing cyanogenic glycosides, may have higher selenium requirements, presumably because cyanide is released from the aglycone by glucosidase activity in the rumen and glutathione peroxidases is deactivated by the cyanide acting on the glutathione Moiety (chemistry), moiety. Neonate ruminants at risk of Nutritional muscular dystrophy, white muscle disease may be administered both selenium and vitamin E by injection; some of the WMD Myopathy, myopathies respond only to selenium, some only to vitamin E, and some to either.


Health effects

The effects of selenium intake on cancer have been studied in several clinical trials and Epidemiology, epidemiologic studies in humans. Selenium may have a Chemopreventive, chemo-preventive role in cancer risk as an Antioxidant, anti-oxidant, and it might trigger the immune response. At low levels, it is used in the body to create anti-oxidant selenoproteins, at higher doses than normal it causes cell death. Selenium (in close interrelation with iodine) plays a role in thyroid health. Selenium is a cofactor for the three thyroid hormone
deiodinase Deiodinase (or "Monodeiodinase") is a peroxidase enzyme that is involved in the activation or deactivation of thyroid hormones. Types Types of deiodinases include: Iodothyronine deiodinases catalyze release of iodine directly from the thyro ...
s, helping activate and then deactivate various thyroid hormones and their metabolites. Isolated selenium deficiency is now being investigated for its role in induction autoimmune reactions in thyroid gland in Hashimoto's thyroiditis, Hashimoto's disease. However, in a case of combined iodine and selenium deficiency, selenium deficiency was shown to play a thyroid-protecting role.


See also

* Abundance of elements in Earth's crust * ACES (nutritional supplement) * Selenium yeast


Notes


References


External links


Selenium
at ''The Periodic Table of Videos'' (University of Nottingham)
National Institutes of Health page on Selenium







Peter van der Krogt elements site
{{Authority control Selenium, Chemical elements Chalcogens Reactive nonmetals Polyatomic nonmetals Antioxidants Dietary minerals Native element minerals Chemical elements with trigonal structure Crystals in space group 152 or 154 Crystals in space group 14 Selene